Landmark-based classification model updating
Abstract:
Systems and methods for updating a classification model of a neural network. The methods include selecting, as a set of landmarks, a limited number of data from a set of historical data used to train a classification model. Additionally, the methods generate new training data from recently collected data. Further, the methods update the classification model with the new training data and the set of landmarks to obtain an updated classification model having a loss function configured to capture similarities in the new training data and remember similarities in the historical data represented by the set of landmarks within a predefined tolerance.
Information query
Patent Agency Ranking
0/0