Methods and apparatuses for predicting user destinations
Abstract:
The present disclosure relates to a concept for machine-learning-based prediction of a destination for a user. Based on historic search data associated with the user, at least one candidate destination is determined based on the user and a given context. A plurality of embedding vectors are determined from an embedding matrix, wherein the embedding vectors are associated with the at least one candidate destination, the user, and the given context. The embedding matrix comprising embedding vectors for different components of the historic search data. The plurality of embedding vectors are fed into one or more first neural network layers to generate a semantic embedding for the candidate destination. The semantic embedding is into one or more second neural network layers to generate a probability score for the candidate destination.
Public/Granted literature
Information query
Patent Agency Ranking
0/0