Holdup algorithm using assisted-physics neural networks
Abstract:
Systems and methods for determining holdup in a wellbore using a neutron-based downhole tool. In examples, the tool includes nuclear detectors that may measure gammas induced by highly energized pulsed-neutrons emitted by a generator. The characteristic energy and intensity of detected gammas indicate the elemental concentration for that interaction type. A detector response may be correlated to the borehole holdup by using the entire spectrum or the ratios of selected peaks. As a result, measurements taken by the neutron-based downhole tool may allow for a two component (oil and water) or a three component (oil, water, and gas) measurement. The two component or three component measurements may be further processed using machine learning (ML) and/or artificial intelligence (AI) with additional enhancements of semi-analytical physics algorithms performed at the employed network's nodes (or hidden layers).
Public/Granted literature
Information query
Patent Agency Ranking
0/0