Training artificial neural networks based on synaptic connectivity graphs
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a student neural network. In one aspect, there is provided a method comprising: processing a training input using the student neural network to generate an output for the training input; processing the student neural network output using a discriminative neural network to generate a discriminative score for the student neural network output, wherein the discriminative score characterizes a prediction for whether the network input was generated using: (i) the student neural network, or (ii) a brain emulation neural network; and adjusting current values of the student neural network parameters using gradients of an objective function that depends on the discriminative score for the student neural network output.
Information query
Patent Agency Ranking
0/0