Machine learning models for selecting treatments for treating an agricultural field
Abstract:
There is provided a system for customized application of herbicides, comprising: a processor(s) executing a code for: feeding test images corresponding to a target agricultural field into a machine learning model trained on a training dataset of sample images of sample agricultural field(s) labelled with ground truth of weed parameters, selecting specific weed parameter(s) of according to performance metric(s) of the model, setting up instructions for triggering application of a first herbicide to a portion of the target agricultural field in response to an outcome of the model indicating likelihood of the specific weed parameter(s) being depicted in an input image of the portion of the target agricultural field, and setting up instructions for triggering application of a second herbicide to the portion of the target agricultural field in response to the outcome of the model indicating non-likelihood of the specific weed parameter(s) being depicted in the input image.
Information query
Patent Agency Ranking
0/0