Lidar systems with improved time-to-digital conversion circuitry
Abstract:
A light detection and ranging (LIDAR) system may include a laser and a plurality of single photon avalanche diodes (SPADs) that are triggered by laser light that reflects off a target scene. The LIDAR system may be operated in a global shutter mode, so each of the SPADs may include its own time-to-digital conversion circuitry. To reduce the area required to implement the circuitry for each diode, the circuitry may be operated using cyclic histogramming, in which a first bit of a time-of-flight value may be determined using a first time period that corresponds to the emission of the laser light and the detection by the SPADs, a second bit of the time-of-flight value may be determined using a second time period that is half of the first time period, etc. In this way, the circuitry may accurately determine the signal peak while requiring less area and memory requirements.
Public/Granted literature
Information query
Patent Agency Ranking
0/0