Long-range modeling of source code files by syntax hierarchy
Abstract:
The syntax elements of a source code program used to represent the context of a focal method are selected based on a priority order. The selected syntax elements are input into a fixed-size context window that is used to train a neural transformer with attention model to learn to generate source code and used by the neural transformer model to generate source code. The context window contains prioritized sequences of tokens that extend beyond the target focus in order to provide a longer visibility back into the source code program for the model to learn predictive patterns. This gives the model a file-level context of the source code program without increasing the size of the context window.
Public/Granted literature
Information query
Patent Agency Ranking
0/0