Training neural network accelerators using mixed precision data formats
Abstract:
Technology related to training a neural network accelerator using mixed precision data formats is disclosed. In one example of the disclosed technology, a neural network accelerator is configured to accelerate a given layer of a multi-layer neural network. An input tensor for the given layer can be converted from a normal-precision floating-point format to a quantized-precision floating-point format. A tensor operation can be performed using the converted input tensor. A result of the tensor operation can be converted from the block floating-point format to the normal-precision floating-point format. The converted result can be used to generate an output tensor of the layer of the neural network, where the output tensor is in normal-precision floating-point format.
Information query
Patent Agency Ranking
0/0