Process for manufacturing an aluminum alloy part
Abstract:
The invention relates to a process for manufacturing a part comprising a formation of successive solid metal layers (201 . . . 20n) that are stacked on top of one another, each layer describing a pattern defined using a numerical model (M), each layer being formed by the deposition of a metal (25), referred to as solder, the solder being subjected to an input of energy so as to start to melt and to constitute, by solidifying, said layer, wherein the solder takes the form of a powder (25), the exposure of which to an energy beam (32) results in melting followed by solidification so as to form a solid layer (201 . . . 20n). The process is characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: —Fe, in a weight fraction of from 1 to 3.7%, preferably from 1 to 3.6%; —Zr and/or Hf and/or Er and/or Sc and/or Ti, in a weight fraction of from 0.5 to 4%, preferably from 1 to 4%, more preferably from 1.5 to 3.5%, even more preferably from 1.5 to 2% each, and in a weight fraction of less than or equal to 4%, preferably less than or equal to 3%, more preferably less than or equal to 2% in total; —Si, in a weight fraction of from 0 to 4%, preferably from 0.5 to 3%; —V, in a weight fraction of from 0 to 4%, preferably from 0.5 to 3%. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable features.
Public/Granted literature
Information query
Patent Agency Ranking
0/0