Credit eligibility predictor
Abstract:
Aspects extract, from payroll data of employees of an organization, data historically associated to previous instances of certified tax credit eligibility; normalize the extracted data with respect to data type and data value; generate from the normalized extracted data via a neural network classifier multi-class outputs for each employee that indicate strengths of likelihood that each employee is currently eligible for each of a plurality of different tax credits; filter the normalized extracted data by removing portions associated to employees indicated within the multi-class outputs as having no currently eligible likelihood for the different tax credits, thereby generating a remainder set of normalized extracted data associated to remainder eligible ones of the employees; and prioritize application for the tax credits for the remainder eligible employees as a function of respective values and likelihoods of eligibility within the remainder set of normalized extracted data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0