Point-set kernel clustering
Abstract:
A computer-implemented clustering method is disclosed for image segmentation, social network analysis, computational biology, market research, search engine and other applications. At the heart of the method is a point-set kernel that measures the similarity between a data point and a set of data points. The method has a procedure that employs the point-set kernel to expand from a seed point to a cluster; and finally identifies all clusters in the given dataset. Applying the method for image segmentation, it identifies several segments in the image, where points in each segment have high similarity: but points in one segment have low similarity with respect to other segments. The method is both effective and efficient that enables it to deal with large scale datasets. In contrast, existing clustering methods are either efficient or effective; and even efficient ones have difficulty dealing with large scale datasets without massive parallelization.
Public/Granted literature
Information query
Patent Agency Ranking
0/0