Use of machine-learning models in creating messages for advocacy campaigns
Abstract:
An advocacy system uses trained machine learning models to create messages that are sent to advocates or policymakers to achieve desired outcomes for an organization. Desired outcomes can include, for example: an advocate sending a message to a policymaker or legislative representative advocating in favor or the organization's position on an issue; a policymaker acting or voting in favor of the organization's position on an issue; or an advocate making a financial contribution to the organization. The machine learning models can be configured to select possible message characteristics or features that the system will include/use in creating/sending messages to/for individual senders and recipients. The machine learning models can be trained based on message characteristics, personal profile characteristics of senders/recipients, and outcomes from previously sent messages. Personal profile characteristics of senders/recipients can indicate correlations between certain message characteristics and certain outcomes of sending messages.
Information query
Patent Agency Ranking
0/0