Methods for scan-specific artifact reduction in accelerated magnetic resonance imaging using residual machine learning algorithms
Abstract:
Images are reconstructed from undersampled k-space data using a residual machine learning algorithm (e.g., a ResNet architecture) to estimate missing k-space lines from acquired k-space data with improved noise resilience. Using a residual machine learning algorithm provides for combining the advantages of both linear and nonlinear k-space reconstructions. The linear residual connection can implement a convolution that estimates most of the energy in k-space, and the multi-layer machine learning algorithm can be implemented with nonlinear activation functions to estimate imperfections, such as noise amplification due to coil geometry, that arise from the linear component.
Information query
Patent Agency Ranking
0/0