Feature compression and localization for autonomous devices
Abstract:
Systems, methods, tangible non-transitory computer-readable media, and devices associated with object localization and generation of compressed feature representations are provided. For example, a computing system can access source data and target data. The source data can include a source representation of an environment including a source object. The target data can include a compressed target feature representation of the environment. The compressed target feature representation can be based on compression of a target feature representation of the environment produced by machine-learned models. A source feature representation can be generated based on the source representation and the machine-learned models. The machine-learned models can include machine-learned feature extraction models or machine-learned attention models. A localized state of the source object with respect to the environment can be determined based on the source feature representation and the compressed target feature representation.
Public/Granted literature
Information query
Patent Agency Ranking
0/0