Method and apparatus for robust low-cost variable-precision self-localization with multi-element receivers in GPS-denied environments
Abstract:
A practically implementable robust direction-of-arrival (DoA) estimation approach that is resistant to localization errors due to mobility, multipath reflections, impulsive noise, and multiple-access interference. As part of the disclosed invention the inventors consider infrastructure-less 3D localization of autonomous underwater vehicles (AUVs) with no GPS assistance and no availability of global clock synchronization. The proposed method can be extended to challenging communication environments and applied for the localization of assets/objects in space, underground, intrabody, underwater and other complex, challenging, congested and sometimes contested environments. Each AUV leverages known-location beacon signals to self-localize and can simultaneously report its sensor data and measurement location. The approach uses two known location beacon nodes, where the beacons are single-hydrophone acoustic nodes that are deployed at known locations and transmit time-domain coded signals in a spread-spectrum fashion.
Information query
Patent Agency Ranking
0/0