Power control systems and methods for machine learning computing resources
Abstract:
Described are context-aware low-power systems and methods that reduce power consumption in compute circuits such as commonly available machine learning hardware accelerators that carry out a large number of arithmetic operations when performing convolution operations and related computations. Various embodiments exploit the fact that power demand for a series of computation steps and many other functions a hardware accelerator performs is highly deterministic, thus, allowing for energy needs to be anticipated or even calculated to a certain degree. Accordingly, power supply output may be optimized according to actual energy needs of compute circuits. In certain embodiments this is accomplished by proactively and dynamically adjusting power-related parameters according to high-power and low-power operations to benefit a machine learning circuit and to avoid wasting valuable power resources, especially in embedded computing systems.
Information query
Patent Agency Ranking
0/0