Systems and methods of windowing time series data for pattern detection
Abstract:
A data analysis computer system is provided that receives a timeseries dataset and generates implied data from the dataset. The dataset is further vectorized to reduce the dimensionality of the data. Users provide input to identify windows of data that either positively or negatively correlate to instances of a given type of occurrence within the data. The user defined windows are converted to fixed sized windows and a machine learning algorithm constructs a model from the data. The model is used to predict instances of the given type of occurrence in newly received data. Validation of the predications may be performed.
Information query
Patent Agency Ranking
0/0