Dark web content analysis and identification
Abstract:
In some examples, dark web content analysis and identification may include ascertaining data that includes text and images, and analyzing the data by performing deep learning based text and image processing to extract text embedded in the images, and deep embedded clustering to generate clusters. Clusters that are to be monitored may be ascertained from the generated clusters. A determination may be made as to whether the ascertained data is sufficient for classification. If so, a deep convolutional generative adversarial networks (DCGAN) based detector may be utilized to analyze further data with respect to the ascertained clusters, and alternatively, a convolutional neural network (CNN) based detector may be utilized to analyze the further data with respect to the ascertained clusters. Based on the analysis of the further data, an operation associated with a website related to the further data may be controlled.
Public/Granted literature
Information query
Patent Agency Ranking
0/0