Method for predicting subsurface features from seismic using deep learning dimensionality reduction for segmentation
Abstract:
A method for training a backpropagation-enabled segmentation process is used for identifying an occurrence of a sub-surface feature. A multi-dimensional seismic data set with an input dimension of at least two is inputted into a backpropagation-enabled process. A prediction of the occurrence of the subsurface feature has a prediction dimension of at least 1 and is at least 1 dimension less than the input dimension.
Information query
Patent Agency Ranking
0/0