Utilizing automatic labelling, prioritizing, and root cause analysis machine learning models and dependency graphs to determine recommendations for software products
Abstract:
A device may receive software data identifying current logs and events associated with software products utilized by an entity and may process the software data, with a machine learning model, to generate error severity scores for the software products. The machine learning model may be trained based on historical software data identifying events and logs associated with software products utilized by the entity and based on a combination of historical health scores, historical sentiment scores, and historical dissimilarity scores for the software products. The device may process the error severity scores, with a prioritization model, to generate prioritized error scores and may process the error severity scores and the prioritized error scores, with a root cause analysis model, to generate root cause data identifying root causes associated with the error severity scores. The device may perform one or more actions based on the root cause data.
Information query
Patent Agency Ranking
0/0