Reinforcement learning method for driver incentives: generative adversarial network for driver-system interactions
Abstract:
A system and method of determining a policy to prevent fading drivers is described. The system and method creates virtual trajectories of incentives such as coupons offered to drivers in a transportation hailing system and corresponding states of drivers in response to the incentives. A joint policy simulator is created from an incentive policy, a confounding incentive policy, and an incentive object policy to generate the simulated actions of drivers in response to different incentives. The rewards of the simulated actions of the drivers is determined by a discriminator. The incentive policy for preventing fading drivers is optimized by reinforcement learning based on the virtual trajectories generated by the joint policy simulator and discriminator.
Information query
Patent Agency Ranking
0/0