System and method for predicting customer behavior
Abstract:
Various implementations of the invention for predicting customer behavior are described. Various implementations of the invention comprise an embedding component configured to receive and embed sequential inputs regarding a plurality of customer interactions with an online presence of a client; a plurality of causal dilated convolutional “CDC” elements configured to receive the embedded sequential inputs and to output a feature vector, where each CDC element comprises two causal dilated convolutions with regularization that is bypassed with a skip connection; a plurality of dense neural network elements configured to receive the feature vector and non-sequential inputs regarding a plurality of other customer interactions with the client, where each of the plurality of dense neural network elements comprises two dense neural networks with regularization that is bypassed with a skip connection; and an output generator configured to receive the output from the plurality of dense neural network elements and to generate a distribution of times over which a particular customer event will occur and/or a likelihood estimation that the particular customer event will occur within a particular time period.
Public/Granted literature
Information query
Patent Agency Ranking
0/0