Methods, apparatuses, and computer programs for processing pulmonary vein computed tomography images
Abstract:
The present disclosure relates to methods, apparatuses, and computer programs for processing computed tomography images. Precise segmentation of the left atrium (LA) in computed tomography (CT) images constitutes a crucial preparatory step for catheter ablation in atrial fibrillation (AF). We aim to apply deep convolutional neural networks (DCNNs) to automate the LA detection/segmentation procedure and create a three-dimensional (3D) geometries. The deep learning provides an efficient and accurate way for automatic contouring and LA volume calculation based on the construction of the 3D LA geometry. Non-pulmonary vein (NPV) trigger has been reported as an important predictor of recurrence post atrial fibrillation (AF) ablation. Elimination of NPV triggers can reduce the post-ablation AF recurrence. The deep learning was applied in pre-ablation pulmonary vein computed tomography (PVCT) geometric slices to create a prediction model for NPV triggers in patients with paroxysmal atrial fibrillation (PAF). The deep learning model using pre-ablation PVCT can be applied to predict the trigger origins in PAF patients receiving catheter ablation. The application of this model may identify patients with a high risk of NPV trigger before ablation.
Information query
Patent Agency Ranking
0/0