Method for adaptive exploration to accelerate deep reinforcement learning
Abstract:
Adaptive exploration in deep reinforcement learning may be performed by inputting a current time frame of an action and observation sequence sequentially into a function approximator, such as a deep neural network, including a plurality of parameters, the action and observation sequence including a plurality of time frames, each time frame including action values and observation values, approximating a value function using the function approximator based on the current time frame to acquire a current value, updating an action selection policy through exploration based on an ε-greedy strategy using the current value, and updating the plurality of parameters.
Information query
Patent Agency Ranking
0/0