Method of generating data by using artificial neural network model having encoder-decoder structure
Abstract:
Disclosed is a method of generating data based on input data by using a pre-trained artificial neural network model having an encoder-decoder structure. In particular, according to the present disclosure, a computing device generates new data based on a probability distribution of input data by using a pre-trained artificial neural network model having an encoder-decoder structure, and the pre-trained artificial neural network model having the encoder-decoder structure corresponds to a pre-trained model in which a latent vector layer is included between an encoder layer and a decoder layer of the artificial neural network model.
Information query
Patent Agency Ranking
0/0