Unit test case generation with transformers
Abstract:
A unit test generation system employs a neural transformer model with attention to generate candidate unit test sequences given a focal method of a programming language. The neural transformer model is pre-trained with source code programs and natural language text and fine-tuned with mapped test case pairs. A mapped test case pair includes a focal method and a unit test case for the focal method. In this manner, the neural transformer model is trained to learn the semantics and statistical properties of a natural language, the syntax of a programming language and the relationships between the code elements of the programming language and the syntax of a unit test case.
Public/Granted literature
Information query
Patent Agency Ranking
0/0