Systems and methods for performing self-improving visual odometry
Abstract:
In an example method of training a neural network for performing visual odometry, the neural network receives a plurality of images of an environment, determines, for each image, a respective set of interest points and a respective descriptor, and determines a correspondence between the plurality of images. Determining the correspondence includes determining one or point correspondences between the sets of interest points, and determining a set of candidate interest points based on the one or more point correspondences, each candidate interest point indicating a respective feature in the environment in three-dimensional space). The neural network determines, for each candidate interest point, a respective stability metric and a respective stability metric. The neural network is modified based on the one or more candidate interest points.
Public/Granted literature
Information query
Patent Agency Ranking
0/0