Demand forecasting using weighted mixed machine learning models
Abstract:
Embodiments forecast demand of an item by receiving historical sales data for the item for a plurality of past time periods including a plurality of features that define one or more feature sets. Embodiments use the feature sets as inputs to one or more different algorithms to generate a plurality of different models. Embodiments train each of the different models. Embodiments use each of the trained models to generate a plurality of past demand forecasts for each of some or all of the past time periods. Embodiments determine a root-mean-square error (“RMSE”) for each of the past demand forecasts and, based on the RMSE, determine a weight for each of the trained models and normalize each weight. Embodiments then generate a final demand forecast for the item for each future time period by combining a weighted value for each trained model.
Public/Granted literature
Information query
Patent Agency Ranking
0/0