Invention Grant
- Patent Title: Magnetic parameter value estimation method and device using deep learning
-
Application No.: US17072384Application Date: 2020-10-16
-
Publication No.: US11934754B2Publication Date: 2024-03-19
- Inventor: Hee Young Kwon , Jun Woo Choi
- Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
- Applicant Address: KR Seoul
- Assignee: Korea Institute of Science and Technology
- Current Assignee: Korea Institute of Science and Technology
- Current Assignee Address: KR
- Agency: Mendelsohn Dunleavy, P.C.
- Priority: KR 20200060703 2020.05.21
- Main IPC: G06F30/27
- IPC: G06F30/27 ; G06N3/04 ; G06N3/045 ; G06N3/08 ; G06N5/01 ; G06N7/01 ; G06N20/00 ; H01F7/02 ; G06F111/10

Abstract:
Disclosed is a magnetic parameter value estimation method using deep learning, the magnetic parameter value estimation method including creating a simulated magnetic domain image corresponding to a spin configuration of a two-dimensional magnetic system created through computer simulation, modeling a deep neural network using the simulated magnetic domain image, and estimating a magnetic parameter value of an observed magnetic domain image using the modeled deep neural network.
Public/Granted literature
- US20210365615A1 MAGNETIC PARAMETER VALUE ESTIMATION METHOD AND DEVICE USING DEEP LEARNING Public/Granted day:2021-11-25
Information query