Multi-slice MRI data processing using deep learning techniques
Abstract:
Disclosed herein are systems, methods, and instrumentalities associated with reconstructing magnetic resonance (MR) images based on multi-slice, under-sampled MRI data (e.g., k-space data). The multi-slice MRI data may be acquired using a simultaneous multi-slice (SMS) technique and MRI information associated with multiple MRI slices may be entangled in the multi-slice MRI data. A neural network may be trained and used to disentangle the MRI information and reconstruct MRI images for the different slices. A data consistency component may be used to estimate k-space data based on estimates made by the neural network, from which respective MRI images associated with multiple MRI slices may be obtained by applying a Fourier transform to the k-space data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0