Predicting ventricular fibrillation
Abstract:
A method comprising: at a training stage, training a machine learning algorithm on a training set comprising: (i) Heart Rate Variability (HRV) parameters extracted from temporal beat activity samples, wherein at least some of said samples include a representation of a Ventricular Fibrillation (VF) event, (ii) labels associated with one of: a first period of time immediately preceding a VF event in a temporal beat activity sample, a second period of time immediately preceding the first period of time in a temporal beat activity sample, and all other periods of time in a temporal beat activity sample; at an inference stage, receiving, as input, a target HRV parameters representing temporal beat activity in a subject; and applying said machine learning algorithm to said target HRV parameters, to predict an onset time of a VF event in said subject.
Public/Granted literature
Information query
Patent Agency Ranking
0/0