Computer-implemented method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks
Abstract:
A computer-implemented method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to enforce the scale-consistency and/or -awareness on the monocular self-supervised ego-motion and depth estimation. A relative weight assigned to the GPS to scale loss exponentially increases as training progresses. The depth and ego-motion prediction neural networks are trained using an appearance-based photometric loss between real and synthesized target images, as well as a smoothness loss on the depth predictions.
Information query
Patent Agency Ranking
0/0