Fluid simulations using one or more neural networks
Abstract:
Approaches in accordance with various embodiments provide for fluid simulation with substantially reduced time and memory requirements with respect to conventional approaches. In particular, various embodiments can perform time and energy efficient, large scale fluid simulation on processing hardware using a method that does not solve for the Navier-Stokes equations to enforce incompressibility. Instead, various embodiments generate a density tensor and rigid body map tensor for a large number of particles contained in a sub-domain. Collectively, the density tensor and rigid body map may represent input channels of a network with three spatial-dimensions. The network may apply a series of operations to the input channels to predict an updated position and updated velocity for each particle at the end of a frame. Such approaches can handle tens of millions of particles within a virtually unbounded simulation domain, as compared to classical approaches that solve for the Navier-Stokes equations.
Public/Granted literature
Information query
Patent Agency Ranking
0/0