Generating scalable and semantically editable font representations
Abstract:
The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately and flexibly generating scalable and semantically editable font representations utilizing a machine learning approach. For example, the disclosed systems generate a font representation code from a glyph utilizing a particular neural network architecture. For example, the disclosed systems utilize a glyph appearance propagation model and perform an iterative process to generate a font representation code from an initial glyph. Additionally, using a glyph appearance propagation model, the disclosed systems automatically propagate the appearance of the initial glyph from the font representation code to generate additional glyphs corresponding to respective glyph labels. In some embodiments, the disclosed systems propagate edits or other changes in appearance of a glyph to other glyphs within a glyph set (e.g., to match the appearance of the edited glyph).
Public/Granted literature
Information query
Patent Agency Ranking
0/0