Experience learning in virtual world
Abstract:
A computer-implemented method of machine-learning is described that includes obtaining a test dataset of scenes. The test dataset belongs to a test domain. The method includes obtaining a domain-adaptive neural network. The domain-adaptive neural network is a machine-learned neural network taught using data obtained from a training domain. The domain-adaptive neural network is configured for inference of spatially reconfigurable objects in a scene of the test domain. The method further includes determining an intermediary domain. The intermediary domain is closer to the training domain than the test domain in terms of data distributions. The method further includes inferring, by applying the domain-adaptive neural network, a spatially reconfigurable object from a scene of the test domain transferred on the intermediary domain. Such a method constitutes an improved method of machine learning with a dataset of scenes comprising spatially reconfigurable objects.
Information query
Patent Agency Ranking
0/0