Identification and classification of talk-over segments during voice communications using machine learning models
Abstract:
A system and methods are provided to analyze audio signals from an incoming voice call. The system includes a processor and a computer readable medium operably coupled thereto, to perform voice analysis operations which include receiving a first audio signal comprising a first audio waveform of a first speech between at least two users during the incoming voice call, accessing speech segment parameters for analyzing the audio signals, determining one or more talk-over segments in the first audio waveform using the speech segment parameters, extracting audio features from each of the one or more talk-over segments, determining, using a machine learning (ML) model trained for interruption analysis of the audio signals, whether each of the one or more talk-over segments are a negative interruption or a non-negative interruption based on the audio features, and determining whether to output a first notification for the negative interruption or the non-negative interruption.
Information query
Patent Agency Ranking
0/0