Dynamic SD-WAN hub cluster scaling with machine learning
Abstract:
Some embodiments of the invention provide a method of dynamically scaling a hub cluster in a software-defined wide area network (SD-WAN) based on particular traffic statistics, the hub cluster being located in a datacenter of the SD-WAN and allowing branch sites of the SD-WAN to access resource of the datacenter by connecting to the hub cluster. A controller of the SD-WAN receives, from the hub cluster, traffic statistics centrally captured at the hub cluster. The controller then analyzes these statistics to identify traffic load fluctuations, and determines that a number of hubs in the hub cluster should be adjusted based on the identified fluctuations. The controller adjusts the number of hubs in the hub cluster based on the determination.
Public/Granted literature
Information query
Patent Agency Ranking
0/0