Interpretation of machine leaning results using feature analysis
Abstract:
Techniques and solutions are described for analyzing results of a machine learning model. A result is obtained for a data set that includes a first plurality of features. A plurality of feature groups are defined. At least one feature group contains a second plurality of features of the first plurality of features. The second plurality of features is less than all of the first plurality of features. Feature groups can be defined based on determining dependencies between features of the first plurality of features, including using contextual contribution values. Group contextual contribution values can be determined for feature groups by aggregating contextual contribution values of the constituent features of the feature groups.
Public/Granted literature
Information query
Patent Agency Ranking
0/0