Facilitating ML algorithm contribution to use cases where data is prohibitive
Abstract:
Example aspects include techniques for building a ML model in a use case with prohibitive training data and employing the ML model within the use case. These techniques may include determining training information including a plurality of stray training reads and a plurality of valid training reads, determining modified training information based at least in part on modifying the plurality of valid training reads, and generating a model for distinguishing a valid read from a stray read based on the modified training information and an evolutionary algorithm. In addition, the techniques may include detecting, by a monitoring device, a plurality of tag reads in response to a plurality of interactions between a tag and the monitoring device, and determining, by the monitoring device, a plurality of valid tag reads based on the model and plurality of tag reads.
Information query
Patent Agency Ranking
0/0