Training an artificial neural network using simulated specimen images
Abstract:
Techniques for training an artificial neural network (ANN) using simulated specimen images are described. Simulated specimen images are generated based on data models. The data models describe characteristics of a crystalline material and characteristics of one or more defect types. The data models do not include any image data. Simulated specimen images are input as training data into a training algorithm to generate an artificial neural network (ANN) for identifying defects in crystalline materials. After the ANN is trained, the ANN analyzes captured specimen images to identify defects shown therein.
Information query
Patent Agency Ranking
0/0