Method and system for scalable acceleration of data processing pipeline
Abstract:
The present disclosure provides a scalable acceleration of data processing in Machine Learning pipeline which is unavailable in conventional methods. Initially, the system receives a dataset and a data processing code. A plurality of sample datasets are obtained based on the received dataset using a sampling technique. A plurality of performance parameters corresponding to each of the plurality of sample datasets are obtained based on the data processing code using a profiling technique. A plurality of scalable performance parameters corresponding to each of a plurality of larger datasets are predicted based on the plurality of performance parameters and the data processing code using a curve fitting technique. Simultaneously, a plurality of anti-patterns are located in the data processing code using a pattern matching technique. Finally, an accelerated code is recommended based on the plurality of anti-patterns and the predicted plurality of scalable performance parameters using an accelerated code recommendation technique.
Information query
Patent Agency Ranking
0/0