Self-supervised 3D keypoint learning for monocular visual odometry
Abstract:
A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target image and a context image from successive images of the monocular video. The method also includes lifting 2D keypoints from the target image to learn 3D keypoints based on a learned depth map from the depth network. The method further includes estimating a trajectory of an ego-vehicle based on the learned 3D keypoints.
Public/Granted literature
Information query
Patent Agency Ranking
0/0