Efficient optimization for neural network deployment and execution
Abstract:
Implementations disclosed describe methods and systems to perform the methods of deploying and executing machine learning models on target-specific computational platforms. Optimization techniques include but are not limited to alignment of kernel operations with hardware instructions of a target processing device, reduction of kernel dimensions near boundaries of data, efficient reuse of a small number of memory components during neural network operations, run-time quantization of data and neural network parameters, and other methods.
Public/Granted literature
Information query
Patent Agency Ranking
0/0