Variance of gradient based active learning framework for training perception algorithms
Abstract:
Neural networks and learning algorithms can use a variance of gradients to provide a heuristic understanding of the model. The variance of gradients can be used in active learning techniques to train a neural network. Techniques include receiving a dataset with a vector. The dataset can be annotated and a loss calculated. The loss value can be used to update the neural network through backpropagation. An updated dataset can be used to calculate additional losses. The loss values can be added to a pool of gradients. A variance of gradients can be calculated from the pool of gradient vectors. The variance of gradients can be used to update a neural network.
Information query
Patent Agency Ranking
0/0