Leveraging unsupervised meta-learning to boost few-shot action recognition
Abstract:
The disclosure herein describes preparing and using a cross-attention model for action recognition using pre-trained encoders and novel class fine-tuning. Training video data is transformed into augmented training video segments, which are used to train an appearance encoder and an action encoder. The appearance encoder is trained to encode video segments based on spatial semantics and the action encoder is trained to encode video segments based on spatio-temporal semantics. A set of hard-mined training episodes are generated using the trained encoders. The cross-attention module is then trained for action-appearance aligned classification using the hard-mined training episodes. Then, support video segments are obtained, wherein each support video segment is associated with video classes. The cross-attention module is fine-tuned using the obtained support video segments and the associated video classes. A query video segment is obtained and classified as a video class using the fine-tuned cross-attention module.
Information query
Patent Agency Ranking
0/0