Utilizing a graph neural network to generate visualization and attribute recommendations
Abstract:
The present disclosure relates to systems, methods, and non-transitory computer readable media that utilize a graph neural network to generate data recommendations. The disclosed systems generate a digital graph representation comprising user nodes corresponding to users, data attribute nodes corresponding to data attributes, and edges reflecting historical interactions between the users and the data attributes; Moreover, the disclosed systems generate, utilizing a graph neural network, user embeddings for the user nodes and data attribute embeddings for the data attribute nodes from the digital graph representation. In addition, the disclosed systems generate, utilizing a graph neural network, user embeddings for the user nodes and data attribute embeddings for the data attribute nodes from the digital graph representation. Furthermore, the disclosed systems determine a data recommendation for a target user utilizing the data attribute embeddings and a target user embedding corresponding to the target user from the user embeddings.
Information query
Patent Agency Ranking
0/0