Cell nuclei classification with artifact area avoidance
Abstract:
Methods and systems for training a neural network model include augmenting an original training dataset to generate an augmented training dataset, by applying an image artifact to a portion of an original image of the original dataset to generate an artifact image. A target image is generated corresponding to the artifact image by deleting labels from the target image at the position of the artifact. A neural network model is trained using the augmented training dataset and the corresponding target image, the neural network model including a first output that identifies artifact regions and other outputs identifying objects.
Public/Granted literature
Information query
Patent Agency Ranking
0/0