Learning semantic segmentation models in the absence of a portion of class labels
Abstract:
Performing semantic segmentation in an absence of labels for one or more semantic classes is provided. One or more weak predictors are utilized to obtain label proposals of novel classes for an original dataset for which at least a subset of sematic classes are unlabeled classes. The label proposals are merged with ground truth of the original dataset to generate a merged dataset, the ground truth defining labeled classes of portions of the original dataset. A machine learning model is trained using the merged dataset. The machine learning model is utilized for performing semantic segmentation on image data.
Information query
Patent Agency Ranking
0/0