Training of model for processing sequence data
Abstract:
A technique for training a model is disclosed. A training sample including an input sequence of observations and a target sequence of symbols having length different from the input sequence of observations is obtained. The input sequence of observations is fed into the model to obtain a sequence of predictions. The sequence of predictions is shifted by an amount with respect to the input sequence of observations. The model is updated based on a loss using a shifted sequence of predictions and the target sequence of the symbols.
Public/Granted literature
Information query
Patent Agency Ranking
0/0