Reverse conducting IGBT with controlled anode injection
Abstract:
We herein describe a semiconductor device comprising a first element portion formed on a substrate, the first element portion being an operating region of an insulated gate bipolar transistor (IGBT) and a second element portion formed on the substrate, the second element portion being an operating region of a diode. The first element portion comprises a first collector region of a second conductivity type, a drift region of a first conductivity type located over the first collector region, and formed by the semiconductor substrate, a first body region of a first conductivity type located over the drift region, a second body region of a second conductivity type located over the drift region, at least one first contact region of a first conductivity type located above the second body region and having a higher doping concentration compared to the first body region, at least one second contact region of a second conductivity type located laterally adjacent to the at least one first contact region, the at least one second contact region having a higher doping concentration than the second body region, a first plurality of trenches extending from a surface through the second body region of a second conductivity type into the drift region wherein the at least one first contact region adjoins at least one of the plurality of trenches so that, in use, a channel region is formed along said at least one trench of the first plurality of trenches and within the body region of a second conductivity type. A first trench of the first plurality of trenches is laterally spaced from a second trench of the first plurality of trenches by a first distance. The second element portion comprises a second collector region of a second conductivity type, the drift region of a first conductivity type located over the second collector region, a third body region of a second conductivity type located over the drift region, a second plurality of trenches extending from a surface through the third body region into the drift region. A first trench of the second plurality of trenches is laterally spaced from a second trench of the second plurality of trenches by a second distance, and the first distance is larger than the second distance. The semiconductor device further comprises a first terminal contact, wherein the first terminal contact is electrically connected to the at least one first contact region of a first conductivity type and the body region of a second conductivity type and a second terminal contact, wherein the second terminal contact is electrically connected to the first collector region and the second collector region.
Public/Granted literature
Information query
IPC分类:
H 电学
H01 基本电气元件
H01L 半导体器件;其他类目中不包括的电固体器件(使用半导体器件的测量入G01;一般电阻器入H01C;磁体、电感器、变压器入H01F;一般电容器入H01G;电解型器件入H01G9/00;电池组、蓄电池入H01M;波导管、谐振器或波导型线路入H01P;线路连接器、汇流器入H01R;受激发射器件入H01S;机电谐振器入H03H;扬声器、送话器、留声机拾音器或类似的声机电传感器入H04R;一般电光源入H05B;印刷电路、混合电路、电设备的外壳或结构零部件、电气元件的组件的制造入H05K;在具有特殊应用的电路中使用的半导体器件见应用相关的小类)
H01L29/00 专门适用于整流、放大、振荡或切换,并具有至少一个电位跃变势垒或表面势垒的半导体器件;具有至少一个电位跃变势垒或表面势垒,例如PN结耗尽层或载流子集结层的电容器或电阻器;半导体本体或其电极的零部件(H01L31/00至H01L47/00,H01L51/05优先;除半导体或其电极之外的零部件入H01L23/00;由在一个共用衬底内或其上形成的多个固态组件组成的器件入H01L27/00)
H01L29/66 .按半导体器件的类型区分的
H01L29/68 ..只能通过对一个不通有待整流、放大或切换的电流的电极供给电流或施加电位方可进行控制的(H01L29/96优先)
H01L29/70 ...双极器件
H01L29/72 ....晶体管型器件,如连续响应于所施加的控制信号的
H01L29/739 .....受场效应控制的
Patent Agency Ranking
0/0